Comparison of Agglomerative Hierarchy Methods in Grouping Cities in West Java Based on Gross Regional Domestic Product
(1) 
(*) Corresponding Author
Abstract
Economic development can be seen through the size of the Gross Regional Domestic Product (GRDP) of a region. Based on the Gini ratio, it can be seen that the economic gap in  is still quite high and continues to increase from 2019. This cannot be allowed to continue, this gap needs to be reduced. Therefore, the West Java government needs to focus on improving the economy in areas with low economic conditions. One of the main indicators of the economic condition of a region is the amount of GRDP. In this research, cities in West Java are grouped based on GRDP using the agglomerative hierarchy method. The agglomerative hierarchy methods used are single linkage, average linkage and complete linkage methods. Then the three methods are compared based on the standard deviation ratio value. The results of data analysis show that the complete linkage method has a smaller standard deviation ratio value than the single linkage and average linkage methods, which is 0.109016. This means that the best method performance of the three agglomerative hierarchy methods used is the complete linkage method
Keywords
Full Text:
PDFReferences
Fikri, S., & Ulinnuha, N. (2019). Perbandingan Metode Single Linkage , Complete Linkage Dan Average Linkage dalam Pengelompokan Kecamatan Berdasarkan Variabel Jenis Ternak Kabupaten Sidoarjo. 4(2). https://doi.org/10.25139/inform.v4i2.1696
Gustientiedina, Adiya, M. H., & Desnelita, Y. (2019). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru. Urnal Nasional Teknologi Dan Sistem Informasi, 05(01), 17–24. https://doi.org/10.25077/TEKNOSI.v5i1.2019.17-24
Handoyo, R. (2014). perbandingan metode clustering menggunakan metode single linkage dan k-means pada pengelompokan dokumen. JSM SRMIK Mikroskil, 15(2), 73–82. http://www.mikroskil.ac.id/ejurnal/index.php/jsm/article/view/161
Hartono, R., Busari, A., & Awaluddin, M. (2018). Pengaruh produk domestik regional bruto (pdrb) dan upah minimum kota (umk) terhadap penyerapan tenaga kerja. Inovasi, 14(1), 36–43. https://doi.org/10.30872/jinv.v14i1.3545
Janah, M. (2022). Analisis Pengaruh Tingkat Pdrb Perkapita, Indeks Pembangunan Manusia, Dan Penanaman Modal Asing Terhadap Ketimpangan Pendapatan Di Indonesia Periode Tahun 2019-2021. Profit: Jurnal Manajemen, Bisnis Dan Akuntansi, 1(4), 23–43. https://doi.org/10.58192/profit.v1i4.183
Larasati, A., Maren, R., & Wulandari, R. (2021). Utilizing Elbow Method for Text Clustering Optimization in Analyzing Social Media Marketing Content of Indonesian e-Commerce. 23(2), 111–119. https://doi.org/10.9744/jti.23.2.111-120
Mujiono, & Sumartono, E. (2022). Cluster Analysis of The Potential Palawija Plants in Central Java Province. Jurnal Social Economic of Agriculture, 11(2), 88–99. http://dx.doi.org/10.26418/j.sea.v11i2.57432
Prabowo, R. A., Nisa, K., & Faisol, A. (2020). Simulasi Pemilihan Metode Analisis Cluster Hirarki Agglomerative Terbaik Antara Average Linkage Dan Ward Pada Data Yang Mengandung Masalah Multikolinearitas. Jurnal Siger Matematika. 01(02), 49–55. http://dx.doi.org/10.23960%2Fjsm.v1i2.2497
Rachmatin, D. (2014). Aplikasi metode-metode agglomerative dalam analisis klaster pada data tingkat polusi udara. Jurnal Ilmiah Program Studi Matematika. Infinity Journal, 3(2), 133–149. https://doi.org/10.22460/infinity.v3i2.p133-149
Ramadhani, L., & Purnamasari, I. (2018). Penerapan Metode Complete Linkage dan Metode Hierarchical Clustering Multiscale Bootstrap ( Studi Kasus : Kemiskinan Di Kalimantan Timur Tahun 2016 ) Application of Complete Linkage Method and Hierarchical Clustering Multiscale Bootstrap Method. 9(2016), 1–10. http://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/208/120
Romhadhoni, P., Faizah, D. Z., & Afifah, N. (2019). Pengaruh Produk Domestik Regional Bruto (PDRB) Daerah terhadap Pertumbuhan Ekonomi dan Tingkat Pengangguran Terbuka di Provinsi DKI Jakarta. Jurnal Matematika Integratif, 14(2), 113. https://doi.org/10.24198/jmi.v14.n2.19262.113-120
Sjafrizal. (2008). Ekonomi Regional, Teori dan Aplikasi. Padang: Baduose.
Sofhya, herlinda N. (2023). Cluster Analysis of Indonesian Provinces Based On Harvest Area And Rice Productivity Using Single Linkage Method. SITEKIN:N: Jurnal Sains, Teknologi Dan Industri, 20(2), 528–537. http://dx.doi.org/10.24014/sitekin.v20i2.21737
Suyanto, Syarippudin, & Wasono. (2021). Di Kabuapten Kutai KartannegaraTahun 2019 Single Linkage Cluster Analysis Based on Village Potential. EKSPONENSIAL, 12(1), 59–64. http://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/761
Syafiyah, U., Asrafi, I., Wicaksono, B., Puspitasari, D. P., & Sirait, F. M. (2022). Analisis Perbandingan Hierarchical dan Non-Hierarchical Clustering Pada Data Indikator Ketenagakerjaan di Jawa Barat Tahun 2020. Seminar Nasional Official Statistics 2022, 803–812. https://doi.org/10.34123/semnasoffstat.v2022i1.1221
Tambunan. (2001). Perekonomian Indonesia Teori dan Temuan Empiris. Jakarta: Ghalia Indonesia.
Todaro, M. P., & Smith, S. C. (2011). Pembangunan Ekonomi (11th ed.). Erlangga.
DOI: 10.24235/eduma.v12i1.13216
Article Metrics
Abstract view : 3 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 EduMa: Mathematics education learning and teachingâ€â€â€Ž