Chemistry Learning Based on Kibas Asah Module (Wetland-Based Chemistry) Integrated AR-Sparkol on Buffer Solution Material: Students' Cognitive and Motivation Diagnostic

Almubarak Ali(1*), Muhammad Fakhri Nawidi(2), Nurusshobah Nurusshobah(3), Santi Dwi Sadiah(4),


(1) Department of Chemistry Education, Faculty of Teacher Training and Education, Universitas Lambung Mangkurat
(2) Department of Chemistry Education, Faculty of Teacher Training and Education, Universitas Lambung Mangkurat
(3) Department of Chemistry Education, Faculty of Teacher Training and Education, Universitas Lambung Mangkurat
(4) Department of Chemistry Education, Faculty of Teacher Training and Education, Universitas Lambung Mangkurat
(*) Corresponding Author

Abstract


The learning process with a module based on local wisdom is the alternative way on how to make students' ability for analyzing and identifying be stronger, especially in learning chemistry and also their motivation. Chemistry learning does not only focus on material content but on how students can interpret content scientifically so that they have a broad and deep range of knowledge. This research was quantitative. It aimed to know the level of students' cognitive and motivation in learning chemistry where they were using a specific module. In this case, the kibas asah integrated Augmented Reality-Sparkol has been used. The research method used experimental research with the type of one-shot case study. The data collecting technique was a questionnaire, and it included a cognitive test and motivation. The data analyzing method was a descriptive statistics approach. The result showed that the level of students’ cognitive through two tests in a different location. Its value was in a row of 0,77 and 0,70 with “high†criteria, and students’ motivation value was 77,61 with strong criteria. These results showed that chemical learning based on the module was developed, and it can fix the quality of the students’ cognitive and motivation deeply. That is, the concept of research is not oriented towards the product produced, but how the product has implications for learning chemistry holistically, becoming a source of scientific reference, honing skills in using technology, creativity, critical thinking, mental models, habituating scientific attitudes, and increasing their knowledge both in terms of chemical content or environmental based references (local wisdom).


Keywords


Chemistry learning, Cognitive diagnostic, Kibas Asah Module, Augmented Reality-Sparkol

Full Text:

PDF

References


Aksela, M. (2005). Supporting Meaningful Chemistry Learning and Higher-order Thinking through Computer-Assisted Inquiry : A Design Research Approach. In University of Helsinki.

Alkhattabi, M. (2017). Augmented reality as e-learning tool in primary schools’ education: Barriers to teachers’ adoption. International Journal of Emerging Technologies in Learning, 12(2), 91–100. doi: 10.3991/ijet. v12i02.6158

Avargil, S., Bruce, M. R. M., Amar, F. G., & Bruce, A. E. (2015). Students’ Understanding of Analogy after a CORE (Chemical Observations, Representations, Experimentation) Learning Cycle, General Chemistry Experiment. Journal of Chemical Education, 92(10), 1626–1638. doi: 10.1021/acs.jchemed.5b00230

Azuma, R. T. (1997). A Survey of Augmented Reality. Presence, 6(4), 355-385.

Bacca, J., Baldiris, S., Fabregat, R., & Graf, S. (2014). Augmented reality trends in eduation: a systematic review of research and applications. Journal of Educational Technology & Society, 17(4), 133.

Behmke, D., Kerven, D., Lutz, R., Paredes, J., Pennington, R., Brannock, E., … Stevens, K. (2018). Augmented Reality Chemistry: Transforming 2-D Molecular Representations into Interactive 3-D Structures. Proceedings of the Interdisciplinary STEM Teaching and Learning Conference, 2(1), 3–11. doi: 10.20429/stem.2018.020103

Beyer, C. J., & Davis, E. A. (2008). Fostering second graders’ scientific explanations: A beginning elementary teacher’s knowledge, beliefs, and practice. Journal of the Learning Sciences, 17(3), 381–414. doi: 10.1080/10508400802222917

Bottani, E., & Vignali, G. (2019). Augmented reality technology in the manufacturing industry: A review of the last decade. IISE Transactions, 51(3), 284–310. doi: 10.1080/24725854.2018.1493244

Bybee, R. W., & Fuchs, B. (2009). Preparing The 21 Century Workface: A New Reform in Science and Technology Education. Journal of Research in Science Teaching, 43(4), 349–352.

Chen, Y. C. (2006). A study of comparing the use of augmented reality and physical models in chemistry education. Proceedings - VRCIA 2006: ACM International Conference on Virtual Reality Continuum and Its Applications, 1(June), 369–372. doi: 10.1145/1128923.1128990

Danczak, S. M., Thompson, C. D., & Overton, T. L. (2017). ‘What does the term Critical Thinking mean to you?’ A qualitative analysis of chemistry undergraduate, teaching staff and employers’ views of critical thinking. Chemistry Education Research and Practice, 18(3), 420-434. doi: 10.1039/c6rp00249h

Daniel, S., & Pedro, A. (2016). Pedagogical strategies for the integration of Augmented Reality in ICT teaching and learning processes. Procedia Computer Science, 100, 894-899.

Dünser, A., Walker, L., Horner, H., & Bentall, D. (2012). Creating interactive physics education books with augmented reality. Proceedings of the 24th Australian Computer-Human Interaction Conference, OzCHI 2012, (November), 107-114. doi: 10.1145/2414536.2414554

Ferguson, D. (2001). Technology in a Constructivist Classroom. Information Technology in Childhood Education Annual, 2001(1), 45–55. Retrieved from /p/8502/

Fjeld, M., Fredriksson, J., Ejdestig, M., Duca, F., Bötschi, K., Voegtli, B., & Juchli, P. (2007). Tangible user interface for chemistry education: Comparative evaluation and re-design. Conference on Human Factors in Computing Systems - Proceedings, (May 2014), 805–808. doi: 10.1145/1240624.1240745

Florentina, & Barbu. (2015). An Inter-disciplinary Approach in Teaching Geography, Chemistry and Environmental Education. Procedia – Social and Behavioral Sciences, 180, 660-665.

Ghavifekr, S., & Rosdy, W. A. W. (2015). Teaching and Learning with Technology : Effectiveness of ICT Integration in Schools. International Journal of Research in Education and Science, 1(2), 175-191.

Hamzah, B. U. (2012). Orientasi Baru Dalam Psikologi Pembelajaran. Jakarta: PT. Bumi Aksara.

Harsh, J., Esteb, J. J., & Maltese, A. V. (2017). Evaluating the development of chemistry undergraduate researchers’ scientific thinking skills using performance-data: first findings from the performance assessment of undergraduate research (PURE) instrument. Chemistry Education Research and Practice, 18(3), 472–485. doi: 10.1039/c6rp00222f

Herdini, H., Linda, R., Abdullah, A., Shafiani, N., Darmizah, F. ‘Alaina, & Dishadewi, P. (2018). Development of interactive multimedia based on Lectora Inspire in chemistry subject in junior high school or madrasah tsanawiyah. Journal of Educational Sciences, 2(1), 46. doi: 10.31258/jes.2.1.p.46-55

Hiliadi, W. (2016). Nilai-Nilai Tradisi Baayun Mulud Sebagai Kearifan Lokal Di Banjarmasin Kalimantan Selatan. Civic Edu Jurnal Pendidikan Kewarganegaraan, 1(1), 19-26. doi: 10.1017/CBO9781107415324.004

Huseyin, A., Seyhan, N. S., & Sinem, U. (2012). The content analysis of graduate theses written between 2000 and 2010 in the field of chemistry education. Procedia-Social and Behavioral Sciences, 47, 729-733.

Insyasiska, D., Zubaidah, S., & Susilo, H. (2015). Pengaruh Project Based Learning Terhadap Motivasi Belajar, Kreatifitas, Kemampuan Berpikir Kritis, dan Kemamppuan Kognitif Siswa Pada Pembelajaran Biologi. Jurnal Pendidikan Biologi, 7(1), 9-21.

Irwansyah, F. S., Yusuf, Y. M., Farida, I., & Ramdhani, M. A. (2018). Augmented Reality (AR) Technology on the Android Operating System in Chemistry Learning. IOP Conference Series: Materials Science and Engineering, 288(1), 0-7. doi: 10.1088/1757-899X/288/1/012068

Klingshirn, M., & Gray, S. (2009). Green chemistry education .Acs symposium series. American chemical society. Washington Dc: Oxford unimpressed, (Chapter5).

Koutromanos, G., Sofos, A., & Avraamidou, L. (2015). The use of augmented reality games in education: a review of the literature. Educational Media International, 52(4), 253-271. doi: 10.1080/09523987.2015.1125988

Kwan, A. H., Mobli, M., Schirra, H. J., Wilson, J. C., Jones, O. A. H., & Keeler, J. (2018). Video with Impact: Access to the World ’ s Magnetic-Resonance Experts for the Scienti fi c-Education Community. Journal of Chemical Education, 96(1), 159-164. doi: 10.1021/acs.jchemed.8b00523

Legendre, R. (1993). Dictionnaire actuel de l'education, ediţia a ll-a, Editura Guerin Montreal.

Leila, H. B., Maryam, S., & Seyyed. (2013). A Comparative Study in Green Chemistry Education Curriculum in America and China. Procedia-Social and Behavioral Sciences, 90, 288-292.

Levy, S. T., & Wilensky, U. (2009). Crossing levels and representations: The connected chemistry (CC1) curriculum. Journal of Science Education and Technology, 18(3), 224–242. doi: 10.1007/s10956-009-9152-8

Lubis, I. R., & Ikhsan, J. (2015). Pengembangan Media Pembelajaran Kimia Berbasis Android Untuk Meningkatkan Motivasi Belajar Dan Prestasi Kognitif Peserta Didik Sma. Jurnal Inovasi Pendidikan IPA, 1(2), 191. doi: 10.21831/jipi.v1i2.7504

Lund, B., Harald, & H. (2016). Nordina : Nordic studies in science education. Nordic Studies in Science Education, 12(2), 157–174. Retrieved from https://www.journals.uio.no/index.php/nordina/article/view/2399/3336

Maier, P., & Klinker, G. (2009). Augmented Reality for teaching spatial relations Patrick. Conference Ofthe International Journal OfArts & Sciences (Toronto), (Toronto), 1–8.

Medicherla, P. S., Chang, G., & Morreale, P. (2010). Visualization for increased understanding and learning using augmented reality. MIR 2010 - Proceedings of the 2010 ACM SIGMM International Conference on Multimedia Information Retrieval, 441–443. doi: 10.1145/1743384.1743462

Meltzer, D. E. (2002). The Ralationship Between Mathematics Preparation and Conceptual Learning Gains in Physics. A possible. Hidden variable. In Diagnostic Pretes Scores. USA: Departement of Physics and Astronomy, Lowa State University. Ames, Lowa 5011.

Normalasarie., & Aulia, S. (2019). Pengembangan Media Pembelajaran Ilmu Sosial Budaya Berbasis Kearifan Lokal (Kain Sasirangan Khas Kalimantan). Elementa: Jurnal Prodi PGSD STKIP PGRI Banjarmasin, 1(1), 61–70.

Ozge, O., & Sinem, D. (2011). The Effects of Internet-Assisted Chemistry Applications on Prospective Chemistry Teachers’ Cognitive Structure. Procedia Social and Behavioral Sciences, 15, 927-931.

Pande, P., & Chandrasekharan, S. (2017). Representational competence: towards a distributed and embodied cognition account. Studies in Science Education, 53(1), 1–43. doi: 10.1080/03057267.2017.1248627

Potgieter, M., & Davidowitz, B. (2011). Preparedness for tertiary chemistry: Multiple applications of the Chemistry Competence Test for diagnostic and prediction purposes. Chemistry Education Research and Practice, 12(2), 193–204. doi: 10.1039/c1rp90024b

Priyambodo, E. (2014). The Effect of Multimedia Based Learning (MBL) in Chemistry Teaching and Learning on Students ’ Self- Regulated Learning (SRL). Journal of Education and Learning, 8(4), 363–367.

Priyambodo, E., & Wulaningrum, S. (2017). Using Chemistry Teaching Aids Based Local Wisdom as an Alternative Media for Chemistry Teaching and Learning. International Journal of Evaluation and Research in Education (IJERE), 6(4), 295–298. doi: 10.11591/ijere.v6i4.10772

Redó, M. N., Torres, A. Q., Quirós, R., Redó, I. N., Castelló, J. B. C., & Camahort, E. (2010). New augmented reality applications: Inorganic chemistry education. Teaching through Multi-User Virtual Environments: Applying Dynamic Elements to the Modern Classroom, 365–386. doi: 10.4018/978-1-61692-822-3.ch020

Rohaan, E. J., Taconis, R., & Jochems, W. M. G. (2009). Measuring teachers’ pedagogical content knowledge in primary technology education. International Journal of Phytoremediation, 27(3), 327–338. doi: 10.1080/02635140903162652

Rui, R., Lim, X., Ang, A. S., Fung, F. M., Kong, L., Wing, C., & Road, K. R. (2017). Application of Social Media in Chemistry Education : Incorporating Instagram and Snapchat in Laboratory Teaching.

Sadullah, D., & Gilson, A. B. (2011). Theoretical basis of comparative education and suggestion of a model: comparative Education council in Turkish education system. Elsevier Ltd.doi:10.1016/j.sbspro.

Shavelson, R. J. (1974). Methods for examining representations of subject matter structure in a student’s memory. Journal of Research in Science Teaching, 11, 231-249.

Shihusa, H., & Keraro, F. N. (2009). Using advance organizers to enhance students’ motivation in learning biology. Eurasia Journal of Mathematics, Science and Technology Education, 5(4), 413–420. doi: 10.12973/ejmste/75290

Singhal, S., Bagga, S., Goyal, P., & Saxena, V. (2012). Augmented Chemistry: Interactive Education System. International Journal of Computer Applications, 49(15), 1–5. doi: 10.5120/7700-1041

Stemler, S. (2001). An overview of content analysis. Practical Assessment, Research & Evaluation, 7(17).

Su, K. D. (2011). An intensive ICT-integrated environmental learning strategy for enhancing student performance. International Journal of Environmental and Science Education, 6(1), 39–58.

Sudarwan, D., & Khairil. (2011). Psikologi Pendidikan (dalam Perspektif Baru). Bandung: ALFABETA.

Sufidin, U., Kadaritna, N., & Rudibyani, R. B. (2017). Pengembangan Media Animasi Berbasis Representasi Kimia pada Materi Sifat-Sifat Koloid. Jurnal Pendidikan Dan Pembelajaran Kimia, 6(3), 400–413.

Sugiyono. (2016). Metode Penelitian Pendidikan (Pendekatan Kuantitatif, Kualitatif, dan R&D). Bandung: ALFABETA.

Susanti, L. ., Hasanah, R., & Khirzin, M. H. (2018). Penerapan Media Pembelajaran Kimia Berbasis Science, Technology, Engineering, and Mathematics (STEM) Untuk Meningkatkan Hasil Belajar Siswa SMA/ SMK Pada Materi Reaksi Redoks. Jurnal Pendidikan Sains (JPS), 6(2), 32–40. doi: 10.26714/jps.6.2.2018.32-40

Suwarna, I. P. (2014). Pengaruh Media Pembelajaran Berbasis Augmented Reality Terhadap Hasil Belajar Siswa Kelas X Pada Konsep Dinamika Partikel. TARBIYA: Journal of Education in Muslim Society, 2(1), 61–72. doi: 10.15408/tjems.v1i1.1111

Swanson, B. L., Watkins, K. A., & Marsick, V. J. (1999). Qualitative Research Methods. In R. A. Swanson, & E. F. Holton. Human Resources Development Research Handbook: Linking Research and Practice.

Taber, K. S. (2000). Chemistry lessons for universities?: a review of constructivist ideas. Journal of the Tertiary Education Group of the Royal Society of Chemistry, 4(2), 63–72.

Taçgin, Z., Uluçay, N., & Özüağ, E. (2016). Designing and Developing an Augmented Reality Application: A Sample Of Chemistry Education. Turkiye Kimya Dernegi Dergisi Kisim C: Kimya Egitimi, 1(1), 147–164.

Tsai, C. C., & Huang, C. M. (2002). Exploring students’ cognitive structures in learning science: A review of relevant methods. Journal of Biological Education, 36(1), 21-26.

Turkoguz, S. (2012). Research and Practice Learn to teach chemistry using visual media tools. Chemistry Education Research and Practice. doi: 10.1039/c2rp20046e

Vesterinen, V. M., & Aksela, M. (2009). A novel course of chemistry as a scientific discipline:How do prospective teachers perceive nature of chemistry through visits to research groups? Chemistry Education Research and Practice, 10(2), 132–141. doi: 10.1039/b908250f

Wahid, A., & Anra, H. (2017). Cross Platform Aplikasi Augmented Reality untuk Mata Pelajaran Kimia Struktur Molekul. Jurnal Sistem Dan Teknologi Informasi, 5(3), 1–5.

Yang, S., Mei, B., & Yue, X. (2018). Mobile Augmented Reality Assisted Chemical Education: Insights from Elements 4D. Journal of Chemical Education, 95(6), 1060–1062. doi: 10.1021/acs.jchemed.8b00017

Yuliono, T., Sarwanto, & Rintayati, P. (2018). Keefektifan Media Pemelajaran Augmented Reality Terhadap Penguasaan Konsep Sistem Pencernaan Manusia. Jurnal Pendidikan Dasar, 3(3), 65–84.




DOI: 10.24235/sc.educatia.v8i1.3325

Article Metrics

Abstract view : 89 times
PDF - 39 times

Refbacks

  • There are currently no refbacks.


Scientiae Educatia: Jurnal Pendidikan Sains indexed by:

       

Creative Commons License
This work is licensed under a 
Creative Commons Attribution 4.0 International License.

Stat Counter (Link)

Â