Comparison of Fuzzy Time Series Chen and Cheng to Forecast Indonesia Rice Productivity
(1) IAIN Syekh Nurjati Cirebon
(*) Corresponding Author
Abstract
Based on BPS data in 2019, around 90% of Indonesians consume rice as the main product of their carbohydrate needs. With the fourth most populous country in the world, Indonesia's rice consumption in 2021 will reach 31.50 million tons. Indonesia's rice production is currently not able to supply the needs of domestic rice consumption. Therefore, the Indonesian government chose to import rice for supply the needs of domestic rice consumption. Forecasting method can help the government to reduce uncertainty about the future of rice productivity. This research will discuss the comparison of the forecasting results of fuzzy timeseries using chen and cheng models in forecasting rice productivity in Indonesia. The comparison based on the percentage of eror or in this research the MAPE value is used as an indicator. The MAPE value obtained using chen model is 18% and using cheng model is 12%. The result of data analysis found that the MAPE value using cheng model is smaller than using chen model. It means that the cheng model is more appropriate used in forecasting data of Indonesia productivity rice. However the chen and cheng models both give good forecasting result because the MAPE value is less than 20%
Keywords
Full Text:
PDFReferences
Arnita, Afnisah, N., & Marpaung, F. (2020). A Comparison of The Fuzzy Time Series Methods of Chen , Cheng and Markov Chain in Predicting Rainfall in Medan A Comparison of The Fuzzy Time Series Methods of Chen , Cheng and Markov Chain in Predicting Rainfall in Medan. The 6th Annual International Seminar on Trends in Science and Science Education. https://doi.org/10.1088/1742-6596/1462/1/012044
Badan Pusat Statistik. (2021). Berita resmi statistik: Hasil Sensus Penduduk 2020 (Issue 7). Badan Pusat Statistik.
Chen, S.-M. (1996). Forecasting enrollments based on fuzzy time series. Elsevire Science, 4287 LNCS, 311–319. https://doi.org/10.1007/11925903_25
Cheng, C. H., Cheng, G. W., dan Wang, J. W. (2008). Multi-attribute Fuzzy Time
Series Method Based on Fuzzy Clustering. Expert systems with applications, 34(2), pp.1235-1242
Hanke, J., & Wichers, D. (2005). Business Forecasting Eigh Edition. New Jersey:
Pearson Prentice hall
Heizer, Jay., & Render Barry. (2015). Manajemen Operasi : Manajemen Keberlangsungan dan Rantai Pasokan. Edisi 11. Salemba Empat, Jakarta.
Ishaq, M., Rumiati, A. T., & Permatasari, O. (2017). Analisis Faktor-Faktor yang Mempengaruhi Produksi Padi di Provinsi Jawa Timur Menggunakan Regresi Semiparametrik Spline. 6(1).
Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669–679. https://doi.org/10.1016/j.ijforecast.2015.12.003
Maria, L., Un, M. E., Jatipaningrum, M. T., & Statistika, J. (2019). Perbandingan Metode Fts-Chen Dan Fts-Markov Chain Untuk Memprediksi Curah Hujan Di Nusa Tenggara Timur. Jurnal Statistika Industri Dan Komputasi, 4(2), 1–9.
Singh, S. R. (2007). A simple time variant method for fuzzy time series forecasting. Cybernetics and Systems, 38(3), 305–321. https://doi.org/10.1080/01969720601187354
Sofhya, H. N. (2020). Fuzzy Smokers Growth Model. Eduma : Mathematics Education Learning and Teaching, 9(2), 57. https://doi.org/10.24235/eduma.v9i2.7345
Song, Q., & Chissom, B. S. (1993). Fuzzy time series and its models. Fuzzy Sets and Systems, 54(3), 269–277. https://doi.org/10.1016/0165-0114(93)90372-O
Tauryawati, M. L., & Irawan, M. I. (2014). Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG. Jurnal Sains Dan Seni ITS, 3(2), A34–A39. www.idx.co.id
Zadeh, L.A. (1965). Fuzzy sets. Information and Control 8(3), 338-353. https://doi.org/10.1016/S0019- 9958(65)90241-X
DOI: 10.24235/eduma.v11i1.10936
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2022