Pengukuran Pembelajaran Mandiri Berbasis Masalah pada Mahasiswa S1 PGSD UPBJJ UT Semarang: Confirmatory Factor Analysis
(1) Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Terbuka
(2) Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Terbuka
(3) Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Muhammadiyah Semarang
(*) Corresponding Author
Abstract
Abstrak
Belajar mandiri menjelaskan proses di mana setiap individu mengambil inisiatif, dengan atau tanpa bantuan orang lain, dalam mengidentifikasi kebutuhan belajar, merumuskan tujuan pembelajaran, mengidentifikasi manusia dan sumber daya materi untuk belajar, memilih dan menerapkan strategi pembelajaran yang tepat, dan mengevaluasi hasil belajar. Tujuan utama penelitian ini adalah mengetahui hubungan indikator-indikator yang membentuk masing-masing dimensi dari Belajar Mandiri melalui pembelajaran berbasis masalah pada mahasiswa S1 Program Studi Pendidikan Guru Sekolah Dasar (PGSD) Universitas Terbuka (UT) Kota Semarang semester 3 masa registrasi 2016/2017. Responden yang digunakan dalam penelitia ini sebanyak 79 mahasiswa. Data dianalisis secara deskriptif melalui reliabilitas (nilai Cronbach Alpha) untuk mengukur konsistensi variabel dan Confirmatory Factor Analysis (CFA) digunakan untuk menguji hubungan antara keterkaitan faktor yang membentuk variabel laten Belajar Mandiri. Hasilnya menunjukkan bahwa pengukuran Belajar Mandiri pada mahasiswa program studi S1 PGSD UPBJJ UT Semarang direpresentasikan oleh awareness, learning strategies, learning activities, evaluation, dan interpersonal skills. Hasil ini menyajikan bagaimana perspektif pembelajaran mandiri dalam kaitannya dengan pengalaman belajar mandiri. Artinya peserta didik diharapkan memiliki pengalaman dalam hal apa, bagaimana, dan mengapa mereka ingin belajar. Oleh karena itu, kajian kami dapat memberikan informasi dan motivasi serta preferensi sebagai pertimbangan dan pada akhirnya menghasilkan kualitas pembelajaran yang efektif.
Kata kunci: belajar mandiri, pembelajaran berbasis masalah, confirmatory factor analysis
Abstract
Self-directed learning explains the process by which individuals take learning, with or without the help of others, in identifying learning needs, formulating learning objectives, identifying human and material resources for learning, selecting and applying appropriate learning strategies, and evaluating learning outcomes.The main purpose of this research is to know the correlation between the indicators that make up each dimension of Self Learning through the program based learning on the undergraduate students of PGSD Universitas Terbuka (UT) Semarang semester 3rdof registration period 2016 / 2017. Data were analyzed descriptively for reliability (Cronbach Alpha values) and Factor Confirmation Analysis (CFA) is used to examine the relationship between the factors that make up Self-Directed. The results show that the Self-Directed measurement of undergraduate students of PGSD UPBJJ UT Semarang is represented by awareness, learning strategies, learning activities, evaluation, and interpersonal skills. This result presents how the independent learning perspective in relation to the self-learning experience.This means that learners are expected to have experience in what matters, how, and why they want to learn. Therefore, our study can provide effective and effective information and motivation and preferences.
Keywords: self-directed, problem based learning, confirmatory factor analysis
Full Text:
PDFReferences
Adachi, K. (2016). Confirmatory Factor Analysis. In Matrix-Based Introduction to Multivariate Data Analysis (pp. 145–159). Singapore: Springer Singapore. http://doi.org/10.1007/978-981-10-2341-5_10
Cazan, A.-M., & Schiopca, B.-A. (2014). Self-directed learning, personality traits and academic achievement. Procedia-Social and Behavioral Sciences, 127, 640–644.
Chou, P.-N., & Chen, W.-F. (2008). Exploratory study of the relationship between self-directed learning and academic performance in a web-based learning environment. Online Journal of Distance Learning Administration, 11(1), 15–26.
de Vet, H. C. W., Mokkink, L. B., Mosmuller, D. G., & Terwee, C. B. (2017). Spearman–Brown prophecy formula and Cronbach’s alpha: different faces of reliability and opportunities for new applications. Journal of Clinical Epidemiology, 85, 45–49. http://doi.org/10.1016/j.jclinepi.2017.01.013
Fox, E., & Riconscente, M. (2008). Metacognition and self-regulation in James, Piaget, and Vygotsky. Educational Psychology Review, 20(4), 373–389.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (Vol. 6): Pearson Prentice Hall Upper Saddle River. NJ. 連çµ.
Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications.
Jalali-Farahani, S., Amiri, P., Karimi, M., Gharibzadeh, S., Mirmiran, P., & Azizi, F. (2017). Socio-Behavioral Factors Associated with Overweight and Central Obesity in Tehranian Adults: a Structural Equation Model. International Journal of Behavioral Medicine, 24(1), 110–119. http://doi.org/10.1007/s12529-016-9574-7
James, F. (2016). The “third ageâ€perspective: enrichment and informal modes of learning in an outdoor sketching group for older adults. International Journal of Lifelong Education, 1–16.
Kirwan, J. R., Lounsbury, J. W., & Gibson, L. W. (2014). An Investigation of the Big Five and Narrow Personality Traits in Relation to Self-Regulated Learning. Journal of Psychology and Behavioral Science, 2(1), 1–11.
Knowles, M. S. (1975). Self-directed learning.
Nkwake, A. M., & Morrow, N. (2016). Clarifying concepts and categories of assumptions for use in evaluation. Evaluation and Program Planning, 59, 97–101.
Payne, S. S., Rocks, J., & Schaffner, B. (2014). Self-direction in learning and academic motivation development in undergraduate health profession students. International Journal of Self-Directed Learning, 11(1), 41–51.
Pilling-Cormick, J., & Garrison, D. R. (2013). Self-directed and self-regulated learning: Conceptual links. Canadian Journal of University Continuing Education, 33(2).
Slater, C. E., & Cusick, A. (2017). Factors related to self-directed learning readiness of students in health professional programs: A scoping review. Nurse Education Today, 52, 28–33. http://doi.org/10.1016/j.nedt.2017.02.011
Williamson, S. N. (2007). Development of a self-rating scale of self-directed learning. Nurse Researcher, 14(2), 66–83.
Wood, S. N. (2017). Generalized additive models: an introduction with R. CRC press.
Zhoc, K. C. H., & Chen, G. (2016). Reliability and validity evidence for the Self-Directed Learning Scale (SDLS). Learning and Individual Differences, 49, 245–250. http://doi.org/10.1016/j.lindif.2016.06.013
DOI: 10.24235/al.ibtida.snj.v4i2.1816
Article Metrics
Abstract view : 378 timesPDF - 32 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Al Ibtida: Jurnal Pendidikan Guru MI
This work is licensed under a Creative Commons Attribution 4.0 International License.
AL IBTIDA Journal Indexed By:
Â
 Â
This work is licensed under a Creative Commons Attribution 4.0 International License.
Â
Al Ibtida: Jurnal Pendidikan Guru MI Published by Department of Madrasah Ibtidaiyah Teacher Education, Faculty of Tarbiyah and Teacher Training, IAIN Syekh Nurjati Cirebon In Collaboration with Perkumpulan Dosen Pendidikan Guru Madrasah Ibtidaiyah (PD PGMI) Indonesia.
Editorial Office:
FITK Building, 5th Floor, Department of Madrasah Ibtidaiyah Teacher Education, Faculty of Tarbiyah and Teacher Training, IAIN Syekh Nurjati Cirebon. Perjuangan Street of Sunyaragi, Cirebon City, West Java, Indonesia 45132 Phone. 0231-481264, Fax. 0231-489926, Email: alibtida@syekhnurjati.ac.id/ alibtida2@gmail.com