Classification of Family Hope Program Assistance Recipients Using the C4.5 Algorithm with Z-Score Normalization (Case Study in Atu Lintang District)
Abstract
One of the challenges in distributing social assistance is determining recipients who are truly eligible objectively and efficiently. This study develops a classification system for Family Hope Program (PKH) recipients by utilizing the C4.5 algorithm combined with Z-Score normalization to group citizen data into Eligible or Ineligible categories. The data used came from 551 residents of Atu Lintang District and included attributes such as house status, wall type, toilet facilities, occupation, and income. The research stages started from data preprocessing, attribute normalization, training the model, to evaluating its performance through metric such as accuracy, precision, recall, and F1-score. The evaluation results showed that the model achieved an accuracy of 94%, precision 0.96, recall 0.90, and F1-score 0.93 for the Eligible category. Based on the confusion matrix, the model was able to correctly classify 47 Eligible residents and 57 Ineligible residents. Analysis of the attributes showed that occupation was the most influential feature in the classification process. These results prove that the application of the C4.5 algorithm can be applied effectively to build a decision support system in the distribution of social assistance, and provide accurate and easy-to-understand results. This study also opens up opportunities for improving model performance by adding more data and testing with alternative algorithms going forward.
Downloads
References
Erfain et al., “Efektifitas Pelaksanaan Program Keluarga Harapan dalam Upaya Pengentasan Kemiskinan di Kecamatan Batuatas Kabupaten Buton Selatan,” Arus J. Sos. dan Hum., vol. 1, no. 3, pp. 108–117, 2021, doi: 10.57250/ajsh.v1i3.40.
M. Qamal, I. Sahputra, N. Nurdin, M. Maryana, and M. Mukarramah, “Sistem Pendukung Keputusan Penentuan Penerimaan Bantuan PKH Menggunakan Metode Naïve Bayes,” TECHSI - J. Tek. Inform., vol. 14, no. 1, p. 21, 2023, doi: 10.29103/techsi.v14i1.6960.
U. S. Mangunsong, Arridha Zikra Syah, and Endra Saputra, “Implementasi Sistem Seleksi Calon Penerima Subsidi Program Keluarga Harapan Dengan Metode SAW Di Kelurahan Sijambi,” Decod. J. Pendidik. Teknol. Inf., vol. 4, no. 3, pp. 737–747, 2024, doi: 10.51454/decode.v4i3.559.
J. Rohmadan Wahari and Y. Reswan, “Implementation of the C45 Algorithm for Predicting the Visit Rate of Patients at dr. Daniel Bengkulu Implementasi Algoritma C45 untuk Memprediksi Tingkat Kunjungan Pasien pada Klinik dr. Daniel Bengkulu,” J. Kom., vol. 2, no. 1, pp. 1–8, 2022, [Online]. Available: https://doi.org/10.53697/jkomitek.v2i1
Z. Situmorang, S. Mandasari, Y. Franciska, K. Andriyani, and P. S. Ramadhan, “Algoritma C45 Dalam Memprediksi Minat Calon Mahasiswa,” J. Sci. Soc. Res., vol. 5, no. 1, p. 125, 2022, doi: 10.54314/jssr.v5i1.809.
J. Amarda, N. Suarna, and O. Nurdiawan, “Klasifikasi Industri Kerajinan Berdasarkan Provinsi Menggunakan Metode Decision Tree Untuk Membandingkan Pengujian Algoritma Id3 Algoritma C45 Dan Algoritma Cart,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 790–796, 2022, doi: 10.36040/jati.v6i2.5736.
Asrianda, L. Rosnita, B. Jange, and Zulfadli, “Multi-criteria K-nearest neighbor in the classification of eye diseases at Dr. Fauziah Bireuen Hospital,” Instal J. Komput., vol. 15, no. 12, pp. 439–446, 2023, [Online]. Available: https://journalinstal.cattleyadf.org/index.php/Instal/index
N. W. Oktha Pratiwi, N. Widya Utami, and I. Gede Juliana Eka Putra, “Klasifikasi Penentuan Penerima Bantuan Sosial Tunai (BST) Menggunakan Algoritma C4.5 Di Desa Keramas, Gianyar, Bali,” J. Inform. Teknol. dan Sains, vol. 4, no. 3, pp. 101–107, 2022, doi: 10.51401/jinteks.v4i3.1667.
R. A. Islahudin, S. Rahmatullah, A. Afandi, and S. Safitri, “Algoritma C4.5 Untuk Memprediksi Kelayakan Penerima Bantuan Pangan Non Tunai,” J. Inform., vol. 22, no. 2, pp. 147–159, 2022, doi: 10.30873/ji.v22i2.3367.
M. Lasena, R. Aminuddin, and Z. Azhar, “Pembentukan Pola Peminjaman Buku Pada Perpustakaan Dengan Menerapkan Metode CART dan Normalisasi Z-Score,” Build. Informatics, Technol. Sci., vol. 6, no. 1, pp. 314–324, 2024, doi: 10.47065/bits.v6i1.5238.
M. L. Radhitya and G. I. Sudipa, “Pendekatan Z-Score Dan Fuzzy Dalam Pengujian Akurasi Peramalan Curah Hujan,” SINTECH (Science Inf. Technol. J., vol. 3, no. 2, pp. 149–156, 2020, doi: 10.31598/sintechjournal.v3i2.567.
M. A. Barata, Edi Noersasongko, Purwanto, and Moch Arief Soeleman, “Improving the Accuracy of C4.5 Algorithm with Chi-Square Method on Pure Tea Classification Using Electronic Nose,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 2, pp. 226–235, 2023, doi: 10.29207/resti.v7i2.4687.
I. P. Fatricia and H. Irawan, “Penerapan Algoritme C4. 5 Terhadap Kelayakan Bantuan Pangan Non Tunai (Bpnt) Pada Kantor Kelurahan Kedaung,” Pros. Semin. Nas. …, vol. 2, no. September, pp. 1049–1058, 2023, [Online]. Available: http://senafti.budiluhur.ac.id/index.php/senafti/article/view/1007%0Ahttp://senafti.budiluhur.ac.id/index.php/senafti/article/download/1007/583
N. Safitri, D. Kusnandar, and S. Martha, “Implementasi Algoritma K-Nearest Neighbor Dengan Normalisasi Z-Score Dalam Klasifikasi Penerima Bantuan Sosial Desa Serunai,” Bul. Ilm. Math. Stat. dan Ter., vol. 13, no. 1, pp. 99–106, 2024.
R. H. Pambudi, B. D. Setiawan, and Indriati, “Penerapan Algoritma C4.5 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal,” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 7, pp. 2637–2643, 2020, [Online]. Available: http://j-ptiik.ub.ac.id
M. Fahmi, “Penerapan Algoritma K-Means Data Mining Pada Clustering Kelayakan Penerima UKT Dengan Normalisasi Data Model Z-Score,” vol. 6, no. 3, 2024, doi: 10.47065/bits.v6i3.6475.
I. Permana and F. N. S. Salisah, “Pengaruh Normalisasi Data Terhadap Performa Hasil Klasifikasi Algoritma Backpropagation,” Indones. J. Inform. Res. Softw. Eng., vol. 2, no. 1, pp. 67–72, 2022, doi: 10.57152/ijirse.v2i1.311.
R. N. Amalda, N. Millah, and I. Fitria, “Implementasi Algoritma C5.0 Dalam Menganalisa Kelayakan Penerima Keringanan Ukt Mahasiswa Itk,” Teorema Teor. dan Ris. Mat., vol. 7, no. 1, p. 101, 2022, doi: 10.25157/teorema.v7i1.6692.
F. R. Valerian et al., “Klasifikasi tingkat obesitas menggunakan metode gbm dan confusion matrix,” vol. 9, no. 2, pp. 2242–2249, 2025.
B. Maulana and D. Febrian, “Comparison of Support Vector Machine , Random Forest , and C4 . 5 Algorithms for Customer Loss Prediction,” vol. 2, no. February, pp. 1–6, 2025.