Integration of Information Technology and Machine Learning to Improve the Efficiency of IoT-Based Logistics Systems
Abstract
In today's digital era, efficiency in supply chain management and logistics is the main key to maintaining business competitiveness. This article discusses the integration of Information Technology (IT) and Machine Learning (ML) in Internet of Things (IoT)-based logistics systems to improve operational efficiency. By leveraging IoT sensors for real-time data collection and ML algorithms for predictive analysis, the system is able to optimize inventory management, route planning, and preventive maintenance. The case studies discussed in this article show that the use of ML in IoT-based logistics systems can reduce delivery times, lower operational costs, and increase responsiveness to changes in market demand. The results of this study are expected to provide insight for system developers and logistics managers in implementing advanced technologies to address challenges in the modern logistics industry.
Downloads
References
H. M. Elhusseiny dan J. Crispim, “A Review of Industry 4.0 Maturity Models: Adoption of SMEs in The Manufacturing and Logistics Sectors,” Procedia Comput. Sci., vol. 219, hal. 236–243, 2023, doi: https://doi.org/10.1016/j.procs.2023.01.286.
L. Abualigah, E. S. Hanandeh, R. A. Zitar, C.-L. Thanh, S. Khatir, dan A. H. Gandomi, “Revolutionizing sustainable supply chain management: A review of metaheuristics,” Eng. Appl. Artif. Intell., vol. 126, hal. 106839, Nov 2023, doi: https://doi.org/10.1016/j.engappai.2023.106839.
H. Younis dan I. Y. Wuni, “Application of industry 4.0 enablers in supply chain management: Scientometric analysis and critical review,” Heliyon, vol. 9, no. 11, hal. e21292, Nov 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e21292.
E. Raza, L. O. Sabaruddin, dan A. L. Komala, “Manfaat dan Dampak Digitalisasi Logistik di Era Industri 4.0,” J. Logistik Indones., vol. 4, no. 1, hal. 49–63, Okt 2020, doi: https://doi.org/10.31334/logistik.v4i1.873.
Z. He, L. Chen, dan L. Zhu, “A study of Inter-Technology Information Management (ITIM) system for industry-education integration,” Heliyon, vol. 9, no. 9, hal. e19928, Sep 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e19928.
A. A. Simiscuka, “A Networking Scheme for an Internet of Things Integration Platform,” 2017 IEEE Int. Conf. Commun. Work. (ICC Work., hal. 271–276, 2017, doi: https://doi.org/10.1109/ICCW.2017.7962669.
S. Madugula, S. Pratapagiri, M. S. B. Phridviraj, V. C. S. Rao, N. Polala, dan P. Kumaraswamy, “Big data for the comprehensive data analysis of IT organizations,” J. High Technol. Manag. Res., vol. 34, no. 2, hal. 100465, Nov 2023, doi: https://doi.org/10.1016/j.hitech.2023.100465.
P. S. Koutsourelakis, N. Zabaras, dan M. Girolami, “Special Issue: Big data and predictive computational modeling,” J. Comput. Phys., vol. 321, no. March, hal. 1252–1254, 2016, doi: https://doi.org/10.1016/j.jcp.2016.03.028.
G. M. D, S. Thakare, S. More, dan J. Kuriakose, “a Software as a Service ( SaaS ) Architecture,” 2017 Int. Conf. I-SMAC (IoT Soc. Mobile, Anal. Cloud), hal. 658–664, 2017.
Y. H. Kim dan J. H. Ahn, “A Study on the Application of Big Data to the Korean College Education System,” Procedia Comput. Sci., vol. 91, no. Itqm, hal. 855–861, 2016, doi: https://doi.org/10.1016/j.procs.2016.07.096.
J. M. Schleicher, M. Vogler, S. Dustdar, dan C. Inzinger, “Application Architecture for the Internet of Cities: Blueprints for Future Smart City Applications,” IEEE Internet Comput., vol. 20, no. 6, hal. 68–75, 2016, doi: https://doi.org/10.1109/MIC.2016.130.
F. Caetano, P. Carvalho, dan J. Cardoso, “Deep Anomaly Detection for In-Vehicle Monitoring—An Application-Oriented Review,” Appl. Sci., vol. 12, no. 19, 2022, doi: https://doi.org/10.3390/app121910011.
L. Oddi et al., “Using UAV imagery to detect and map woody species encroachment in a subalpine grassland: Advantages and limits,” Remote Sens., vol. 13, no. 7, 2021, doi: https://doi.org/10.3390/rs13071239.
M. Bilal, G. Ali, M. W. Iqbal, M. Anwar, M. S. A. Malik, dan R. A. Kadir, “Auto-Prep: Efficient and Automated Data Preprocessing Pipeline,” IEEE Access, vol. 10, no. October, hal. 107764–107784, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3198662.
X. Ma dan D. Zhang, “Digitalization of the economy for fossil fuels efficiency and carbon neutrality,” Resour. Policy, vol. 86, hal. 104133, Okt 2023, doi: https://doi.org/10.1016/j.resourpol.2023.104133.
I. A. T. Hashem et al., “The role of big data in smart city,” Int. J. Inf. Manage., vol. 36, no. 5, hal. 748–758, 2016, doi: https://doi.org/10.1016/j.ijinfomgt.2016.05.002.
H. Dui, H. Xu, L. Zhang, dan J. Wang, “Cost-based preventive maintenance of industrial robot system,” Reliab. Eng. Syst. Saf., vol. 240, hal. 109595, Des 2023, doi: https://doi.org/10.1016/j.ress.2023.109595.
M. Finkelstein, J. H. Cha, dan T. Bedford, “Optimal preventive maintenance strategy for populations of systems that generate outputs,” Reliab. Eng. Syst. Saf., vol. 237, hal. 109334, Sep 2023, doi: https://doi.org/10.1016/j.ress.2023.109334.
S. Wei, M. Nourelfath, dan N. Nahas, “Analysis of a production line subject to degradation and preventive maintenance,” Reliab. Eng. Syst. Saf., vol. 230, hal. 108906, Feb 2023, doi: https://doi.org/10.1016/j.ress.2022.108906.
M. T. Siraj, B. Debnath, S. B. Payel, A. B. M. M. Bari, dan A. R. M. T. Islam, “Analysis of the fire risks and mitigation approaches in the apparel manufacturing industry: Implications toward operational safety and sustainability,” Heliyon, vol. 9, no. 9, hal. e20312, Sep 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e20312.
K. Szyc, M. Nikodem, dan M. Zdunek, “Bluetooth low energy indoor localization for large industrial areas and limited infrastructure,” Ad Hoc Networks, vol. 139, hal. 103024, Feb 2023, doi: https://doi.org/10.1016/j.adhoc.2022.103024.