Machine Learning for Predictive Maintenance to Enhance Energy Efficiency in Industrial Operations
Abstract
In the realm of industrial operations, optimizing energy usage is critical for both economic and environmental sustainability. Traditional approaches to maintenance often rely on fixed schedules or reactive responses to equipment failures, leading to inefficiencies and higher energy consumption. Predictive maintenance (PdM) offers a proactive solution by leveraging machine learning algorithms to predict equipment failures before they occur. This approach not only reduces downtime but also facilitates energy-efficient practices by enabling timely interventions and optimized operational strategies. This study explores the application of machine learning techniques for predictive maintenance in a manufacturing setting. Historical operational data, including equipment performance metrics and environmental conditions, are collected and preprocessed. Various machine learning models, such as support vector machines (SVM), random forests, and neural networks, are trained on this dataset to predict equipment failures and maintenance needs. Feature engineering and model selection processes are detailed to highlight the steps taken to enhance prediction accuracy and reliability. Through rigorous experimentation and validation, our approach demonstrates significant improvements in energy efficiency within industrial operations. By predicting maintenance needs in advance, downtime is minimized, and energy-intensive emergency repairs are avoided. Furthermore, the implementation of optimized maintenance schedules and operational strategies based on machine learning predictions leads to substantial reductions in overall energy consumption. Case studies and quantitative analyses underscore the efficacy of our methodology in enhancing both operational efficiency and energy sustainability in industrial settings.
Downloads
References
P. N. Novikova dan A. S. Dolgal, “Engineering magnetic survey for the study of underground infrastructure of urbanized areas | Ð˜Ð½Ð¶ÐµÐ½ÐµÑ€Ð½Ð°Ñ Ð¼Ð°Ð³Ð½Ð¸Ñ‚Ð¾Ñ€Ð°Ð·Ð²ÐµÐ´ÐºÐ° Ð´Ð»Ñ Ð¸ÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¿Ð¾Ð´Ð·ÐµÐ¼Ð½Ð¾Ð¹ инфраÑтруктуры урбанизированных территорий,†in 15th Conference and Exhibition Engineering and Mining Geophysics 2019, Gelendzhik 2019, 2019, hal. 290–296.
H. Y. Shwe, T. K. Jet, P. Han, J. Chong, dan A. S. Architecture, “An IoT-oriented data storage framework in smart city applications - IEEE Xplore Document,†hal. 106–108, 2016, doi: 10.1109/ICTC.2016.7763446.
G. Wang, M. Zhou, X. Wei, dan G. Yang, “Vehicular Abandoned Object Detection Based on VANET and Edge AI in Road Scenes,†IEEE Trans. Intell. Transp. Syst., vol. 24, no. 12, hal. 14254–14266, 2023, doi: 10.1109/TITS.2023.3296508.
M. Wischow, G. Gallego, I. Ernst, dan A. Borner, “Monitoring and Adapting the Physical State of a Camera for Autonomous Vehicles,†IEEE Trans. Intell. Transp. Syst., hal. 1–14, 2023, doi: 10.1109/TITS.2023.3328811.
Y. Wolf, L. Sielaff, dan D. Lucke, “A Standardized Description Model for Predictive Maintenance Use Cases,†Procedia CIRP, vol. 118, hal. 122–127, 2023, doi: 10.1016/j.procir.2023.06.022.
Roessobiyatno, T. P. Anggoro, B. Nainggolan, dan E. Purwandesi, “Social media analysis supporting smart city implementation (Practical study in Bandung district),†2016 Int. Conf. ICT Smart Soc. ICISS 2016, no. July, hal. 80–86, 2016, doi: 10.1109/ICTSS.2016.7792853.
C. S. Li, H. Franke, C. Parris, B. Abali, M. Kesavan, dan V. Chang, “Composable architecture for rack scale big data computing,†Futur. Gener. Comput. Syst., vol. 67, hal. 180–193, 2017, doi: 10.1016/j.future.2016.07.014.
S. Ghosh, S. J. Sunny, dan R. Roney, “Accident Detection Using Convolutional Neural Networks,†2019 Int. Conf. Data Sci. Commun. IconDSC 2019, hal. 3–8, 2019, doi: 10.1109/IconDSC.2019.8816881.
T. Clohessy, T. Acton, dan L. Morgan, “Smart city as a service (SCaaS): A future roadmap for e-government smart city cloud computing initiatives,†Proc. - 2014 IEEE/ACM 7th Int. Conf. Util. Cloud Comput. UCC 2014, hal. 836–841, 2014, doi: 10.1109/UCC.2014.136.
F. Rozi, “Systematic Literature Review pada Analisis Prediktif dengan IoT : Tren Riset , Metode , dan Arsitektur,†vol. 03, no. 01, hal. 43–53, 2020.
D. Baroni, S. Ancora, J. Franzaring, S. Loppi, dan F. Monaci, “Tree-rings analysis to reconstruct atmospheric mercury contamination at a historical mining site,†Front. Plant Sci., vol. 14, 2023, doi: 10.3389/fpls.2023.1260431.
M. Bilal, G. Ali, M. W. Iqbal, M. Anwar, M. S. A. Malik, dan R. A. Kadir, “Auto-Prep: Efficient and Automated Data Preprocessing Pipeline,†IEEE Access, vol. 10, no. October, hal. 107764–107784, 2022, doi: 10.1109/ACCESS.2022.3198662.
G. Fusco, C. Colombaroni, dan N. Isaenko, “Short-term speed predictions exploiting big data on large urban road networks,†Transp. Res. Part C Emerg. Technol., vol. 73, hal. 183–201, 2016, doi: 10.1016/j.trc.2016.10.019.
J. Wen, S. Li, Z. Lin, Y. Hu, dan C. Huang, “Systematic literature review of machine learning based software development effort estimation models,†Inf. Softw. Technol., vol. 54, no. 1, hal. 41–59, 2012, doi: 10.1016/j.infsof.2011.09.002.
L. Song dan H. Shen, “An integrated scheme for the management of drifting fish aggregating devices in tuna purse seine fisheries,†Fish. Manag. Ecol., vol. 30, no. 1, hal. 56 – 69, 2023, doi: 10.1111/fme.12600.
U. Sivarajah, M. M. Kamal, Z. Irani, dan V. Weerakkody, “Critical analysis of Big Data challenges and analytical methods,†J. Bus. Res., vol. 70, hal. 263–286, 2017, doi: 10.1016/j.jbusres.2016.08.001.
G. Yakubova, B. B. Chen, M. N. Al-Dubayan, dan S. Gupta, “Virtual Instruction in Teaching Mathematics to Autistic Students: Effects of Video Modeling, Virtual Manipulatives, and Mathematical Games,†J. Spec. Educ. Technol., vol. 39, no. 1, hal. 51–66, Mar 2024, doi: 10.1177/01626434231177875.
M. Shami, S. Maqbool, H. Sajid, Y. Ayaz, dan S. C. S. Cheung, “People Counting in Dense Crowd Images using Sparse Head Detections,†IEEE Trans. Circuits Syst. Video Technol., vol. 8215, no. c, hal. 1–10, 2018, doi: 10.1109/TCSVT.2018.2803115.
F. Chung dan W. Zhao, “PageRank and random walks on graphs,†Bolyai Soc. Math. Stud., vol. 20, hal. 43–62, 2010, doi: 10.1007/978-3-642-13580-4_3.
N. Van Noord dan E. Postma, “Learning scale-variant and scale-invariant features for deep image classi fi cation,†Pattern Recognit., vol. 61, hal. 583–592, 2017, doi: 10.1016/j.patcog.2016.06.005.
L. Liu et al., “Deep Learning for Generic Object Detection: A Survey,†Int. J. Comput. Vis., vol. 128, no. 2, hal. 261–318, 2020, doi: 10.1007/s11263-019-01247-4.
P. A. Mathew, L. N. Dunn, M. D. Sohn, A. Mercado, C. Custudio, dan T. Walter, “Big-data for building energy performance: Lessons from assembling a very large national database of building energy use,†Appl. Energy, vol. 140, hal. 85–93, 2015, doi: 10.1016/j.apenergy.2014.11.042.
A. Giyenko dan Y. I. Cho, “Intelligent UAV in smart cities using IoT,†Int. Conf. Control. Autom. Syst., no. Iccas, hal. 207–210, 2017, doi: 10.1109/ICCAS.2016.7832322.
T. F. Bernadus, L. B. Subekti, dan Y. Bandung, “IoT-Based Fall Detection and Heart Rate Monitoring System for Elderly Care,†2019.
A. Ampuni dan A. Fitrianto, “Smart Parking System With Automatic Cashier Machine Utilize the IoT Technology,†2019.
N. N. A. Silveira, A. A. Meghoe, dan T. Tinga, “Quantifying the suitability and feasibility of predictive maintenance approaches,†Comput. Ind. Eng., vol. 194, hal. 110342, Agu 2024, doi: 10.1016/j.cie.2024.110342.