Enhancing Urban Safety: The Role of Object Detection in Smart City Surveillance Systems
Abstract
Urban safety is a critical concern in the development and management of smart cities. This article explores the transformative role of object detection technology in enhancing surveillance systems within these urban environments. Object detection, a subset of computer vision, enables the automated identification and tracking of various objects, such as vehicles, pedestrians, and unusual activities, in real-time. By integrating advanced object detection algorithms with existing surveillance infrastructures, smart cities can significantly improve public safety and response times. This paper reviews the current state of object detection technologies, their applications in urban surveillance, and the benefits they offer, including increased situational awareness, crime prevention, and efficient emergency management. Additionally, the article discusses challenges and future directions for research and development in this field, emphasizing the importance of ethical considerations and data privacy in the deployment of these technologies. Through case studies and practical examples, we illustrate how object detection is reshaping urban safety and contributing to the creation of more secure and resilient smart cities.
Downloads
References
O. Elharrouss, N. Almaadeed, dan S. Al-Maadeed, “A review of video surveillance systems,†J. Vis. Commun. Image Represent., vol. 77, hal. 103116, Mei 2021, doi: 10.1016/j.jvcir.2021.103116.
B. Li, X. Yang, dan X. Wu, “Role of net-zero renewable-based transportation systems in smart cities toward enhancing cultural diversity: Realistic model in digital twin,†Sustain. Energy Technol. Assessments, vol. 65, hal. 103715, Mei 2024, doi: 10.1016/j.seta.2024.103715.
T. Zhang et al., “Methods on COVID-19 Epidemic Curve Estimation During Emergency Based on Baidu Search Engine and ILI Traditional Surveillance in Beijing, China,†Engineering, vol. 31, hal. 112–119, Des 2023, doi: 10.1016/j.eng.2023.08.006.
I. Essamlali, H. Nhaila, dan M. El Khaili, “Advances in machine learning and IoT for water quality monitoring: A comprehensive review,†Heliyon, vol. 10, no. 6, hal. e27920, Mar 2024, doi: 10.1016/j.heliyon.2024.e27920.
H. Yao et al., “Development and optimization of object detection technology in civil engineering: A literature review,†J. Road Eng., Jun 2024, doi: 10.1016/j.jreng.2024.01.006.
D. Pylorof dan H. E. Garcia, “Situational awareness-enhancing community-level load mapping with opportunistic machine learning,†Appl. Energy, vol. 366, hal. 123291, Jul 2024, doi: 10.1016/j.apenergy.2024.123291.
W. Li et al., “Dual-mode wireless integrated system for real-time monitoring and early warning of large-scale marine structures,†Nano Energy, vol. 118, hal. 108970, Des 2023, doi: 10.1016/j.nanoen.2023.108970.
B. Racherache, P. Shirani, A. Soeanu, dan M. Debbabi, “CPID: Insider threat detection using profiling and cyber-persona identification,†Comput. Secur., vol. 132, hal. 103350, Sep 2023, doi: 10.1016/j.cose.2023.103350.
B. Zhang et al., “Dynamically control selective photo response in the visible light using phase change material,†Opt. Laser Technol., vol. 149, hal. 107916, Mei 2022, doi: 10.1016/j.optlastec.2022.107916.
S. Lee, C. Lee, J. Won Nam, A. Vernez Moudon, dan J. A. Mendoza, “Street environments and crime around low-income and minority schools: Adopting an environmental audit tool to assess crime prevention through environmental design (CPTED),†Landsc. Urban Plan., vol. 232, hal. 104676, Apr 2023, doi: 10.1016/j.landurbplan.2022.104676.
Y. Jamtsho, P. Riyamongkol, dan R. Waranusast, “Real-time Bhutanese license plate localization using YOLO,†ICT Express, vol. 6, no. 2, hal. 121–124, Jun 2020, doi: 10.1016/j.icte.2019.11.001.
M. Wischow, G. Gallego, I. Ernst, dan A. Borner, “Monitoring and Adapting the Physical State of a Camera for Autonomous Vehicles,†IEEE Trans. Intell. Transp. Syst., hal. 1–14, 2023, doi: 10.1109/TITS.2023.3328811.
D. Ren, T. Sun, C. Yu, dan C. Zhou, “Research on Safety Helmet Detection for Construction Site,†in Proceedings - 2021 International Conference on Computer Information Science and Artificial Intelligence, CISAI 2021, 2021, hal. 186–189, doi: 10.1109/CISAI54367.2021.00042.
W. Yang, Y. Xiao, H. Shen, dan Z. Wang, “Generalized weld bead region of interest localization and improved faster R-CNN for weld defect recognition,†Measurement, vol. 222, hal. 113619, Nov 2023, doi: 10.1016/j.measurement.2023.113619.
S. Pirttikangas et al., “Experiences with smart city traffic pilot,†Proc. - 2016 IEEE Int. Conf. Big Data, Big Data 2016, hal. 1346–1352, 2017, doi: 10.1109/BigData.2016.7840741.
Y. Zeng, J. Lan, B. Ran, J. Gao, dan J. Zou, “A novel abandoned object detection system based on three-dimensional image information,†Sensors (Switzerland), vol. 15, no. 3, hal. 6885 – 6904, 2015, doi: 10.3390/s150306885.
H. C. Kaşkavalci dan S. Gören, “A Deep Learning Based Distributed Smart Surveillance Architecture using Edge and Cloud Computing,†Proc. - 2019 Int. Conf. Deep Learn. Mach. Learn. Emerg. Appl. Deep. 2019, hal. 1–6, 2019, doi: 10.1109/Deep-ML.2019.00009.
F. Paissan, A. Ancilotto, dan E. Farella, “PhiNets: A Scalable Backbone for Low-power AI at the Edge,†ACM Trans. Embed. Comput. Syst., vol. 21, no. 5, hal. 1–18, Sep 2022, doi: 10.1145/3510832.
J. Xiao, S. Li, dan Q. Xu, “Video-Based Evidence Analysis and Extraction in Digital Forensic Investigation,†IEEE Access, vol. 7, hal. 55432–55442, 2019, doi: 10.1109/ACCESS.2019.2913648.
AHFE Virtual Conferences on Software and Systems Engineering, and Artificial Intelligence and Social Computing, 2020, vol. 1213 AISC. 2021.
S. Saluky, S. H. Supangkat, dan I. B. Nugraha, “Abandoned Object Detection Method Using Convolutional Neural Network,†in 2020 International Conference on ICT for Smart Society (ICISS), 2020, hal. 1–4, doi: 10.1109/ICISS50791.2020.9307547.
Z. Wang, K. A. I. Xie, C. Wen, J. He, dan H. Chen, “Small-Object Detection Based on YOLO and Dense Block via Image Super-Resolution,†IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3072211.
M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed, dan R. Klette, “Deep-anomaly : Fully convolutional neural network for fast anomaly detection in crowded scenes Mohammad Sabokrou,†Comput. Vis. Image Underst., no. February, hal. 0–1, 2018, doi: 10.1016/j.cviu.2018.02.006.
L. H. Palivela dan S. Ramachandran, “An enhanced image hashing to detect unattended objects utilizing binary SVM classification,†J. Comput. Theor. Nanosci., vol. 15, no. 1, hal. 121 – 132, 2018, doi: 10.1166/jctn.2018.7064.
L. Liu et al., “Deep Learning for Generic Object Detection: A Survey,†Int. J. Comput. Vis., vol. 128, no. 2, hal. 261–318, 2020, doi: 10.1007/s11263-019-01247-4.
W. Villegas-Ch dan J. Govea, “Application of Deep Learning in the Early Detection of Emergency Situations and Security Monitoring in Public Spaces,†Appl. Syst. Innov., vol. 6, no. 5, hal. 90, Okt 2023, doi: 10.3390/asi6050090.
G. Elkana dan I. G. B. Baskara Nugraha, “Low cost embedded surveillance for public transportation,†Proc. - 2014 Int. Conf. ICT Smart Soc. “Smart Syst. Platf. Dev. City Soc. GoeSmart 2014â€, ICISS 2014, hal. 242–245, 2014, doi: 10.1109/ICTSS.2014.7013180.