Comparison Of Sentiment Analysis Of Traveloka And Tiket.Com Applications On Twitter Using The Naive Bayes Method
Abstract
The country of Indonesia has a strategic geographical position and is also said to be a country that is very rich in natural resources and cultural diversity. One of the supporters of economic growth in Indonesia is tourism. To support the potential of the tourism sector in Indonesia, many online travel agent applications have started to appear. Of the many OTAs, the top two applications were selected, namely the Traveloka and Tiket.com applications. This sentiment analysis requires data from Twitter. This research compares sentiment analysis on the Traveloka and Tiket.com applications in terms of price and service. The method used is naïve Bayes. The goal is to get sentiment information contained in a text with a positive or negative view. With this research, it is hoped that we can see a comparison of sentiment analysis between the Traveloka and Tiket.com applications and be able to find out the level of accuracy of naïve bayes on the Traveloka and Tiket.com applications. The price dataset that gets more positive sentiment is the Traveloka price of 97.2%. In the service dataset that has positive sentiment, Tiket.com is 46.9%. Then, the greatest accuracy was obtained after oversampling the Tiket.com price dataset by 73%, Traveloka prices by 94%, Ticket services by 87% and Traveloka services by 86%.
Downloads
References
Badan pusat statistik, "Luas Daerah dan Jumlah Pulau Menurut Provinsi," 2021.
J. W. N. Damaris Natalia Naomi Fadading, "PENGARUH ONLINE TRAVEL AGENT TERHADAP KEPUTUSAN PEMBELIAN TIKET PESAWAT DI ANTAVAYA TOUR & TRAVEL," 2021.
L. L. J. Putri Agung Permatasari, "Survei Tentang Analisis Sentimen Pada Media Sosial," 2021.
T. A. W. Bambang, "Analisis pengaruh citra perusahaan dan kualitas layanan terhadap loyalitas pelanggan melalui kepuasan pelanggan," Jurnal Manajemen Strategi dan Aplikasi Bisnis, vol. 2, no. 1, pp. 61-70, 2019.
R. T. V. W. L. S. Hakam Febtadianrano Putro, "Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan," Jurnal TIKomSiN, vol. 8, 2020.
H. Y. T. Reza Dwi Fitriani, "Penanganan Klasifikasi Kelas Data Tidak Seimbang Dengan Random Oversampling Pada Naive Bayes," Jurnal Gaussian , vol. 10, no. 1, pp. 11-20, 2021.
U. Fayyad, "Knowledge discovery in databases: An overview," 1997.
A. S. A. F. Syifa Khairunnisa, "Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19)," JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 406, 2021.
D. K. A. R. A. T. T. H. S. M. Reza Faisal, Text Mining Untuk Pemula ( Edisi Pertama ), Banjarbaru: Scripta Cendekia, 2022.
T. Jo, Text Categorization: Approaches, 2019.
I. Muraina, Ideal Dataset Splitting Ratios in Machine Learning Algorithms :GENERAL CONCERNS FOR DATA SCIENTISTS AND DATA ANALYSTS, 2022.
E. Indrayuni, "Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes," 2019.
S. Windyaning Ustyannie, "Oversampling Method To Handling Imbalanced Datasets Problem in Binary Logistic Regression Algorithm," Indonesian Journal of Computing and Cybernetics Systems, vol. 14, 2020.
M. H. Muhammad Rangga Aziz Nasution, "Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter," JURNAL INFORMATIKA, vol. 6, 2019.
A. W. Detrinal Putra, "Prediksi Keputusan Minat Penjurusan Siswa SMA Yadika 5 Menggunakan Algoritma Naïve Bayes," Prosiding Seminar Nasional Riset Dan Information Science (SENARIS), vol. 2, 2020.