Implementation of Genetic Algorithm Theory in Determining the Composition of Food Ingredients

  • Haris Maulana IAIN Syekh Nurjati Cirebon
  • Sefty Rizqi Annisa IAIN Syekh Nurjati Cirebon
  • Vera Rosnia IAIN Syekh Nurjati Cirebon
Keywords: Genetic Algorithm, Composition, Food Ingredients

Abstract

The problem of determining the structure of the elements of food that is good for daily use is a problem that looks small but is actually important for the health of the body. A hereditary calculation that has an unwavering quality in creating an ideal result can be used for this problem. In this review, 138 information about food ingredients and their substances were used for testing. Information will be handled with hereditary calculation techniques that combine the processes of recognition, assessment, recombination, hybrid and change. From this information a population will be formed which has a population size of 20 and each chromosome has 10 qualities where the value of each quality is the file quantity of food ingredients in the data set. The hybrid probability values ​​and the changes used were 0.7 and 0.05. The best mixes of foodstuffs are those which, when added together for each healthful substance, will yield values ​​that most closely approximate the amounts required for each type of nutrient required in a day. The value of the amount of aggregate required.

Downloads

Download data is not yet available.

References

[1] T. Rismawan and S. Kusumadewi, “Aplikasi Algoritma Genetika Untuk Penentuan Komposisi Bahan,” Semin. Nas. Apl. Teknol. Inf. 2007 (SNATI 2007), vol. 2007, no. Snati, pp. 1–5, 2007.
[2] D. Saputra, M. Safii, M. Fauzan, and S. Tunas Bangsa, “Implementasi Algoritma Backpropagation Dalam Memprediksi Harga Bahan Pangan,” Oktober, vol. 1, no. 4, pp. 120–129, 2020.
[3] N. Florida, C. López, and V. Pocomucha, “CORE View metadata, citation and similar papers at core.ac.uk,” vol. 2, no. 2, pp. 35–43, 2012.
[4] A. Aribowo, S. Lukas, and M. Gunawan, “Penerapan Algoritma Genetika Pada Penentuan Komposisi Pakan Ayam Petelur,” Semin. Nas. Apl. Teknol. Inf., vol. 3, no. 4, pp. 21–24, 2018.
[5] M. I. Kamil, Optimasi penentuan bahan pangan harian atlet sepakbola menggunakan algoritma genetika untuk memenuhi kecukupan gizi skripsi. 2014.
[6] S. Uyun, Shofwatul. Hartati, “Penentuan Komposisi Bahan Pangan Untuk Diet Penyakit,” Seminar, vol. 2011, no. Snati, pp. 17–18, 2011, [Online]. Available: http://journal.uii.ac.id/index.php/Snati/article/view/2196.
[7] Z. Fitriah, J. Matematika, and U. Brawijaya, “KNPMP III 2018 ISSN : 2502-6526 PENGEMBANGAN ALGORITMA GENETIKA UNTUK ISSN : 2502-6526 Book of KNPMP III 2018,” pp. 722–730, 2018.
[8] C. Rozikin and A. Solichin, “Implementasi Algoritma Genetika dan Regresi Linier Berganda Untuk Prediksi Persediaan Bahan Makanan Pada Restoran Cepat Saji Implementation Of Genetic Algorithm and Multi-Linear Regression For Predicting Food Supplies At Fast Food Restaurants,” Semin. Nas. Multidisiplin Ilmu 2017, no. April, pp. 10–17, 2017.
[9] J. Hasyir, ( Studi Kasus : Rumah Sakit XYZ Di Pekanbaru ). 2019.
[10] P. S. Informatika, U. Internasional, and S. Indonesia, “Penerapan Algoritma Genetika untuk Menghitung Biaya Optimal Komposisi Bahan Makanan pada Penderita Uric Acid,” vol. 11, no. September, pp. 6–13, 2021, doi: 10.34010/jati.v11i2.
Published
2022-09-14
How to Cite
Maulana, H., Annisa, S. R., & Rosnia, V. (2022). Implementation of Genetic Algorithm Theory in Determining the Composition of Food Ingredients. ITEJ (Information Technology Engineering Journals), 6(2), 123 - 130. https://doi.org/10.24235/itej.v6i2.105
Section
Articles